
OSNASLib: One-Shot NAS Library

Sian-Yao Huang and Wei-Ta Chu
National Cheng Kung University, Tainan, Taiwan

{P76084245, wtchu}@gs.ncku.edu.tw

Abstract

Incorporating neural architecture search (NAS) into a
targeted task is an emerging research branch to further put
performance forward. We propose an open-source one-shot
NAS frameowrk called OSNASLib to empower users to eas-
ily integrate or design one-shot NAS methods for a target
task. By well modulating important components in one-shot
NAS, users can customize one or more components at will.
With the provided interface generator, input/output defini-
tions and the links between components can be initialized
easily, and users can focus on algorithm design or func-
tional details implementation. We take image classification
and face recognition as the sample tasks, and show per-
formance of baseline methods provided in the library. The
source code is available at : https://github.com/
eric8607242/OSNASLib.

1. Introduction
Designing deep neural architectures to obtain good per-

formance is a common task in current multimedia and com-
puter vision researches. Researchers usually need to jointly
consider performance and resource consumption. However,
manually tuning and designing neural architectures is very
time-consuming. Therefore, researches of neural architec-
ture search (NAS) emerge recently to search good neural
architectures for different scenarios automatically.

There are three major components in NAS: search space,
search strategy, and performance estimation. Search space
is consisted of all candidate neural architectures. From a
search space, NAS methods search the best neural archi-
tecture for different constraints. A search strategy is thus
needed to search the best architecture efficiently from the
search space. Random search [8], grid search, evolution al-
gorithm [2] are common search strategies adopted by many
NAS methods. To search the architecture yielding the best
performance, a performance estimation method is required
to estimate performance of any specific architecture. Accu-
racy predictor, supernet [12, 1], and proxy training architec-
tures are common ways adopted in existing NAS methods.

Figure 1: The structure of OSNASLib. The components
shown in blue can be customized by users easily.

The earliest NAS methods trained thousands of archi-
tectures to evaluate performance of architectures, which re-
quired extremely expensive computation and resource. Re-
cent one-shot NAS methods [12, 10, 6] focus on improving
search efficiency. They encode the entire search space into
an over-parameterized network called a supernet. In each
layer of the supernet, candidate blocks of various configura-
tions are included. After training the supernet, all architec-
tures in the search space can be approximated and evaluated
by activating different candidate blocks in each layer with-
out additional training. Therefore, one-shot NAS is more
efficient because only one neural network (supernet) train-
ing is needed.

Although one-shot NAS is efficient, it is still challeng-
ing to incorporate NAS methods with different tasks. The
challenges include:

• The entry barrier of designing a NAS method is high.
Much prior knowledge and implementation skills are
needed.

• Most NAS methods were developed for image clas-
sification tasks. Various coding styles and training
pipelines make extending them to other tasks not fea-
sible.

In this work, we propose OSNASLib that is a gen-
eral one-shot NAS framework empowering users to in-
tegrate one-shot NAS methods into various tasks easily.
OSNASLib consists of six major components: criterion,
dataflow, training agent, search space, search strategy, and
training strategy, as shown illustrated in Fig. 1. For each

component, OSNASLib provides several baselines and al-
lows users to customize them for various tasks flexibly.
To build a basic one-shot NAS, users only need to set the
training agent, dataflow, and criterion without implement-
ing functional details. Furthermore, users can develop a
new one-shot NAS method by customizing search space,
search strategy, and training strategy. With the provided
baselines, OSNASLib allows users to compare their pro-
posed method with baseline NAS methods fairly.

To customize for various tasks, users can implement de-
tails of their proposed methods based on provided base-
lines. OSNASLib clearly defines input/output formats of
each component, and the relationship between components.
The input/output definitions and how different components
should be linked are integrally called an “interface” in this
work. OSNASLib provides an interface generator to assist
users to generate the interface for any designated compo-
nent. With the interface, users can focus on designing and
implementing functional details of each component. One or
more of the six components shown in Fig. 1 can be easily
initialized as the user’s wish. Other components can be left
with default settings. This design makes OSNASLib very
flexible and makes users focused.

OSNASLib is suitable for the following users:
• NAS beginners who want to build codebases of basic

one-shot NAS methods quickly.
• Researchers who want to integrate one-shot NAS

methods into a targeted task to improve performance.
• Researchers who focus on designing NAS methods

and want to validate their methods for various tasks
and compare with other baseline methods fairly.

2. Framework
2.1. Training Agent

Integrating NAS methods into deep neural networks for
specific tasks has emerged recently. However, for differ-
ent tasks, different training pipelines are needed to proceed
the NAS process. To make OSNASLib more flexible, we
decouple the training pipeline from the entire NAS pro-
cess. With this isolation, OSNASLib allows users to fo-
cus on implementing details of the training pipeline like
forward/backward parameter updating. The training agent
illustrated in Fig. 1 embodies the training pipeline. OS-
NASLib incorporates the training agent with the pre-defined
searching pipeline, called main agent, to search the best
neural architecture for the targeted task automatically.

2.2. Criterion

To construct the training agent, users can customize var-
ious loss functions for the target task. The component for
defining loss functions is called criterion in OSNASLib.
Separating this component from the training agent is also

Figure 2: Structure of the search space. With the provided
interface (blue regions), users can define various search
spaces by setting different supernet structures and different
search space configurations.

due to the consideration of flexibility.

2.3. Dataflow

For different tasks and different datasets, data pre-
process or specific data loading schemes are needed. OS-
NASLib allows users to customize the dataflow by design-
ing appropriate pre-processing, different data samplers, or
different data loaders. With this isolation, users can ap-
ply NAS methods on different datasets with the same OS-
NASLib components easily.

2.4. Search Space

In OSNASLib, we allow users to customize the search
space for different application scenarios with different hard-
ware resources. Fig. 2 illustrates structure of the search
space component in OSNASLib. To define the search space,
users should configure a supernet and a hardware constraint
lookup table. In the supernet, configurations of the search
space like candidate blocks of each layer, and input/output
channel sizes of each layer, should be set. Based on the
configurations, the main agent constructs the supernet for
architecture search. With the provided interface, it is flexi-
ble to implement different supernet structures.

To search architectures under various hardware con-
straints, OSNASLib evaluates the “hardware cost” of the
sub-network a in a supernet as

Cost(a) =
∑
l

Cost(al), (1)

where the term Cost(al) is a constant cost of the block in
the lth layer of a. For each search space, OSNASLib con-
structs a hardware constraint lookup table to store the re-
source requirement of each candidate block in each layer.
The goal of utilizing this lookup table is to evaluate the
hardware cost quickly, which has been widely adopted in
many one-shot methods [6, 12].

After architecture search, OSNASLib builds a specific
network according to the searched architecture configura-
tion. The specific network is then passed to the main agent
to be trained from scratch and then evaluated.

2.5. Training Strategy

One-shot NAS utilizes a supernet to estimate perfor-
mance of architectures in the search space. Therefore, how
to train a supernet well is very important. A poor supernet
may mislead the entire search process and good architec-
tures may potentially not to be found.

The supernet training strategy can also be customized by
users in OSNASLib. By implementing functional details
based on the generated interfaces, users can focus on devel-
opment of the supernet training strategy without the distrac-
tion of other components.

2.6. Search Strategy

Given a supernet A, a search strategy aims at searching
the best architecture a from the search space under a target
hardware constraint C. That is,

a∗ = argmin
a∈A

Lval(w(a)). (2)

s.t. Cost(a∗) ≤ C, (3)

where the term w denotes weights of the supernet, Lval

denotes the validation loss, Cost(a∗) denotes the hardware
constraint of the architecture a∗ calculated by Eq. 1, and
w(a) denotes the subset of w corresponding to the sampled
architecture a.

It is important to design a search strategy that can effi-
ciently search the best sub-network from the supernet. OS-
NASLib also offers flexibility for users to customize the
search strategy. With the provided interfaces, users can im-
plement their search strategies or utilize the default strate-
gies.

2.7. Baseline Components

With OSNASLib, users can also compare their proposed
NAS method with other methods fairly (e.g., based on the
same search hyper-parameters and the same codebase), or
evaluate their proposed NAS method on various tasks. This
is enabled based on the baseline components provided in
OSNASLib. Details of the provided baseline components
are shown in Table 1.

py thon3 b u i l d i n t e r f a c e . py \\
− i t s e a r c h s p a c e \\
−− cus tomize −name mynas \\
−− cus tomize − c l a s s MyNAS

Figure 3: An example of the command for generating an
interface for the search space component.

Table 1: The baseline components in OSNASLib.

Components Baselines
Task Classification, Face recognition
Criterion Cross entropy loss, Triplet loss [11], Focal loss [9]
Dataflow Cifar10 / 100 [7], Imagenet [3], CASIA-WebFace [13]
Search
Space

SPOS [4], ProxylessNAS [1],
FBNet [12], MobileFaceNet ,SGNAS [6]

Search
Strategy

Softmax differentiable searcher [10]
Gumbel softmax differentiable searcher [12]
Evolution searcher [4], Random searcher [8],
Architecture generator [6]

Training
Strategy

Differentiable sampler [10, 12],
Uniform sampler [4], Fairness sampler [2]

s e a r c h s p a c e /
| − example /
| | − i n i t . py
| | − m y n a s l o o k u p t a b l e . py
| | − mynas model . py
| | − m y n a s s u p e r n e t . py
. . .

Figure 4: The results generated by the interface generator
with the file name ”mynas”. These files are automatically
imported into the main agent.

3. Interface Generator
OSNASLib empowers users to customize specific com-

ponents for various tasks. However, importing and coop-
erating multiple components into the main agent are te-
dious. To reduce this burden, OSNASLib provides an in-
terface generator to generate interfaces for each component
and automatically import necessary files to the main agent.
To generate interfaces, only one command is needed. For
example, Fig. 3 shows how to use the interface generator to
generate the interface for the search space component with
the file name “mynas” and class name “MyNAS”. The gen-
erated results are shown in Fig. 4.

4. Image Classification
We first take image classification to showcase the usage

of OSNASLib. All experiments were conducted on the CI-
FAR100 dataset. For architecture search, we randomly sam-
ple 80% of images from the training set as the training data,
and the rest is kept as the validation data. After architecture
search, we train the searched architecture based on the full
training data, and test it on the original validation set de-
fined in CIFAR100. All experiments were experimented on
one GEFORCE RTX 3090 GPU.

Table 2: Performance of baseline search space components in OSNASLib.

Search Space FLOPs (M) Top-1 Acc (%) Search time (sec) Size of search space
ProxylessNAS [1] 28.2±2.9 70.8±0.6 1680 ∼ 5.6× 1017

FBNetS [12] 30.4±1.9 70.5±0.7 1847 ∼ 1021

SPOS [4] (w/o channel search) 27.5±1.7 68.9±0.8 1711 ∼ 1012

SGNAS [6] 29.9±0.3 71.8±0.2 2145 ∼ 1040

Table 3: Performance of baseline search strategy compo-
nents in OSNASLib.

Search Strategy
FLOPs
(M)

Top-1 Acc
(%)

Search time
(sec)

Evolution
Algorithm [4]

23.7±1.5 69.5 ±0.8 1728

Random Search [8] 25.8±0.2 70.0±0.2 2018
Architecture
Generator [6]

28.2±2.9 70.8±0.6 1696

Table 4: Performance of baseline search space components
on face recongition.

Search Space FLOPs (M) Top-1 Acc (%)
ProxylessNAS [1] 291.91 95.00
FBNetL [12] 285.73 94.68
SPOS [4] (w/o channel search) 289.64 95.18
SGNAS [6] 291.58 95.00

4.1. Analysis of Search Strategy

Here we compare the baseline search strategies, includ-
ing random search [8], evolution algorithm [4], and archi-
tecture generator [6] on the ProxylessNAS [1] search space.
We first train the supernet with the uniform sampling [4]
training strategy. After training the supernet, we utilize
three search strategies to search the architecture under 27M
FLOPs, respectively. This process is run for three times,
and the average performance, the average search time, and
the average FLOPs of searched architectures are shown in
Table 3.

In the experiments, we found that the search strategy ar-
chitecture generator [6] can achieve the highest top-1 ac-
curacy and the lowest search time. Because the architec-
ture generator is constructed based on the gradient descent
algorithm, the FLOPs of the searched architecture are not
strictly under the target FLOPs (27M). In addition, the ran-
dom search [8] strategy achieves satisfactory performance
compared to other baseline methods.

4.2. Analysis of Search Space

We further compare baseline search spaces, including
that in ProxylessNAS [1], SPOS [4], FBNetS [12], and SG-
NAS [6]. We train the supernets based on different search
spaces with the uniform sampling [4] training strategy. Af-

ter training a supernet, we search the architecture under
27M FLOPs with the architecture generator [6] search strat-
egy. The experiment was run for three times, and the aver-
age top-1 accuracy, the average FLOPs, the average search
time, and size of the search space are shown in Table 2.

We see that SGNAS can achieve the highest top-1 accu-
racy with the largest search space. On the other hand, it’s
interesting to see that, although the search space of FBNetS
is larger than ProxylessNAS, ProxylessNAS achieves better
top-1 accuracy.

5. Face Recognition
We also use OSNASLib to integrate one-shot NAS into a

face recognition task, in order to verify that OSNASLib can
be flexibly adjusted to different tasks. All experiments here
were conducted on the CASIA-WebFace dataset [13]. For
architecture search, we randomly sample 80% of images in
the dataset as the training data, and the rest is kept as the val-
idation data. After architecture search, we train the searched
architecture based on the whole CASIA-WebFace dataset,
and test the trained network based on the LFW dataset [5].

Here we compare the baseline search spaces, including
that in ProxylessNAS, SPOS, FBNetL, and SGNAS. We
train the supernets based on different search spaces with the
uniform sampling [4] training strategy. After supernet train-
ing, we search good architectures under 300M FLOPs with
the evolution searcher [4].

Face recognition performance is shown in Table 4. From
this table, we found that SPOS can achieve the highest top-
1 accuracy. It is interesting to see that the search spaces
yielding the highest top-1 accuracy are different for that for
image classification.

6. Conclusion
In this work, we propose a general one-shot NAS frame-

work called OSNASLib to allow users to easily and flexi-
bly integrate one-shot NAS methods into various tasks. To
make users focus on algorithm design, OSNASLib provides
the interface generator to generate interfaces for any desig-
nated component. Researchers can fairly evaluate and com-
pare one-shot NAS methods based on the same codebase
and same evaluation configurations. To make OSNASLib
more robust for various deep learning tasks, we will keep
supporting more baseline methods in the future.

References
[1] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct

neural architecture search on target task and hardware. In
Proceedings of International Conference on Learning Rep-
resentations, 2019. 1, 3, 4

[2] Xiangxiang Chu, Bo Zhang, and Ruijun Xu. Fairnas: Re-
thinking evaluation fairness of weight sharing neural archi-
tecture search. arXiv preprint arXiv:1907.01845, 2019. 1,
3

[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, 2009. 3

[4] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. Single path one-
shot neural architecture search with uniform sampling. In
Proceedings of European Conference on Computer Vision,
2020. 3, 4

[5] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik
Learned-Miller. Labeled faces in the wild: A database for
studying face recognition in unconstrained environments,
2007. 4

[6] Sian-Yao Huang and Wei-Ta Chu. Searching by generating:
Flexible and efficient one-shot nas with architecture genera-
tor. In Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, 2021. 1, 2, 3, 4

[7] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images, 2009. 3

[8] Liam Li and Ameet Talwalkar. Random search and repro-
ducibility for neural architecture search. In Proceedings
of the Conference on Uncertainty in Artificial Intelligence,
2019. 1, 3, 4

[9] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollar. Focal loss for dense object detection. In Pro-
ceedings of IEEE International Conference on Computer Vi-
sion, 2017. 3

[10] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:
Differentiable architecture search. In Proceedings of Inter-
national Conference on Learning Representations, 2019. 1,
3

[11] Florian Schroff, Dmitry Kalenichenko, and James Philbin.
Facenet: A unified embedding for face recognition and clus-
tering. In Proceedings of IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2015. 3

[12] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing
Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-
vnet design via differentiable neural architecture search. In
Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, 2019. 1, 2, 3, 4

[13] Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z. Li. Learning
face representation from scratch, 2014. 3, 4

