

Background and Motivation

This paper focuses on automated optimization of the channel size of CNNs for Image classification problem.

CONet Overview. The algorithm begins with a small baseline model and trains a few epochs using the train dataset. Every channel dynamically shrinks/expands based on the rank evolution. This is repeated until all channel sizes have stabilized.

Issues of Existing Channel Scaling Methods

Current SOTA methods (i.e. hand-crafted or NAS) for designing cell-topologies in CNNs use heuristic approaches for setting up the channel size in different convolutional layers. The rule of thumb is to increase the number of channels for deeper layers.

Local Indicators and Metric Development

Central to our approach is to develop a metric to probe independent channels in CNN and evaluate how well the convolutional weights are trained.

Metrics for Convolutional Layers

We define **rank-slope** by computing the relative ratio of the rank gain to the number of epochs taken to plateau.

CONet: Channel Optimization for Convolutional Neural Networks

Mahdi S. Hosseini^{1*}, Jia Shu Zhang^{2*}, Zhe Li^{2*}, Andre Fu^{2*}, Jingxuan Su², Mathieu Tuli², Konstantinos N. Plataniotis²

CONet Algorithm

https://github.com/mahdihosseini/CONet

Algorithm 2 Channel Size Optimizaion **Input:** Network, hyperparameters $\delta, \gamma, \mu, \phi$ Output: Optimized Network 1: **for** trial **in** trials **do** Train current model for a few epochs Compute average rank (\overline{R}) per layer 3: Compute average MC ($\overline{\kappa}$) per layer 4: From \overline{R} get rank-slope (S) per layer 5: for layer in network do 6: Set action to Expand if $S[\text{layer}] < \delta$ or $\overline{\kappa}[\text{layer}] > \mu$ then Set action to Shrink 10: if Last action \neq current action then 11: if $\phi < \gamma$ then 12: Stop, channel sizes have converged 13: $\phi \leftarrow \phi / 2$ 14: Calculate New Channels 15: Instantiate model with new channels List of input and output ranks for each layer. List of input and output Mapping condition. Rank averages. Mapping condition averages. Rank average slopes. Rank average slopes threshold. Mapping condition threshold. Old channel sizes, per layer (ℓ) . New channel sizes, per layer (ℓ) . Last operation list, per layer (ℓ) . ω Scale factors of channel sizes. Stopping condition for scaling factor.

Channel size evolution example of DARTS7 using CONet algorithm on CIFAR100.

	ImageNet Results			Architecture Search			ImageNet Training Setup			
Architecture	Top-1 (%)	Top-5 (%)	Params (M)	Search Cost (GPU-days)	Searched On Dataset	GPUs	Training Epochs	Batch Size	Optimizer	LR-Schedular
NASNet-A[51]	74.0	91.6	5.3	3-4	CIFAR10	450	250	128	SGD	StepLR: Gamma=0.97, Step-size=1
AmoebaNet-C[28]	75.7	92.4	6.4	7	CIFAR10	250	250	128	SGD	StepLR: Gamma=0.97, Step-size=2
DARTS-7 [22]	52.9	76.9	0.5	4	CIFAR10	1	200	128	SGD	StepLR: Gamma=0.5, Step-size=25
DARTS-14[22]	73.3	91.3	4.7	4	CIFAR10	1	250	128	SGD	StepLR: Gamma=0.97, Step-size=1
GHN[47]	73.0	91.3	6.1	0.84	CIFAR10	1	250	128	SGD	StepLR: Gamma=0.97, Step-size=1
ProxylessNAS[3]	74.6	92.2	5.8	8.3	ImageNet		300	256	Adam	
SNAS[42]	72.7	90.8	4.3	1.5	CIFAR10	1	250	128	SGD	StepLR: Gamma=0.97, Step-size=1
BayesNAS[49]	73.5	91.1	3.9	0.2	CIFAR10	1	250	128	SGD	StepLR: Gamma=0.97, Step-size=1
P-DARTS[5]	75.6	92.6	4.9	0.3	CIFAR10	8	250	1024	SGD	OneCycleLR: Linear Annealing
GDAS[12]	72.5	90.9	4.4	0.17	CIFAR10	1	250	128	SGD	StepLR: Gamma=0.97, Step-size=1
PC-DARTS[43]	75.8	92.7	5.3	3.83	ImageNet	8	250	1024	SGD	OneCycleLR: Linear Annealing
DARTS+[21]	76.3	92.8	5.1	0.2	CIFAR100	1	800	2048	SGD	OneCycleLR: Cosine Annealing
NASP[44]	73.7	91.4	9.5	0.1	CIFAR10	1	250	128	SGD	StepLR: Gamma=0.97, Step-size=1
SGAS[19]	75.9	92.7	5.4	0.25	CIFAR10	1	250	1024	SGD	OneCycleLR: Linear Annealing
MiLeNAS[13]	75.3	92.4	5.3	0.3	CIFAR10	1	250	128	SGD	StepLR: Gamma=0.97, Step-size=1
SDARTS[4]	75.3	92.2	3.3	1.3	CIFAR10	1	250	1024	SGD	OneCycleLR: Linear Annealing
FairDARTS[7]	75.6	92.6	4.3	3	ImageNet	1	250	1024	SGD	OneCycleLR: Linear Annealing
DARTS7(δ_3)	67.9	88.0	1.8	0.3	CIFAR100	1	200	128	SGD	StepLR: Gamma=0.5, Step-size=25
DARTS7 (δ_2)	72.0	90.6	3.4	0.4	CIFAR100	1	200	128	SGD	StepLR: Gamma=0.5, Step-size=25
DARTS7 (δ_1)	74.1	91.7	5.6	0.5	CIFAR100	1	200	128	SGD	StepLR: Gamma=0.5, Step-size=25
DARTS-14(δ_2)	67.2	87.6	1.8	0.8	CIFAR10	1	200	128	SGD	StepLR: Gamma=0.97, Step-size=1
DARTS-14(δ_1)	74.0	91.8	4.8	0.8	CIFAR10	1	200	128	SGD	StepLR: Gamma=0.97, Step-size=1
DARTS 14(δ_1)	76.6	93.2	9.0	0.9	CIFAR100	1	200	128	SGD	StepLR: Gamma=0.5, Step-size=25

1: University of New Brunswick; 2: University of Toronto; *: equal contribution Contact: <u>mahdi.hosseini@unb.ca</u>

ImageNet